Example 1 Ian flew his airplane at best cruise speed for 2h, then at economy cruise speed for 3h, covering a total of $850 \, km$. On the following day, he flew at best cruise speed for 3h, and at economy cruise for 2h, covering a total of $900 \, km$. Find the best cruise speed and the economy cruise speed for lan's airplane.

Let I be best cruise speed.

Let y be economy cruise speed.

	Distance (km)	Speed (km/h)	Time (h)
Day 1	850 km	7	2± 2h
		У	3 h
Day 2	900 km	ત્રં	34
	- K/W	y	2h

* Distance he flew out best cruise

Day 2:
$$3x + 2y = 900 - B$$

$$\triangle \times 3$$
: $6x + 9y = 2550 - (A')$

$$Bx2:-6x+4y=1800-B)$$

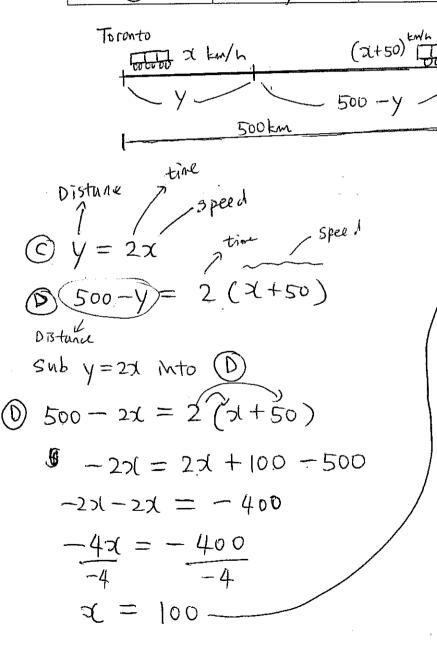
$$(A^{2}) - (B^{2}) + (5) = 750$$

 $y = 150$

$$31 + 2(150) = 900$$

$$32 + 300 = 900$$

$$\underbrace{31 = 600}_{3}$$


$$\chi = 200$$

Example 2 A train leaves Toronto for Montreal at the same time as another train leaves Montreal for Toronto. The cities are $500 \ km$ apart. The trains pass each other $2 \ h$ later. The train from Montreal is travelling $50 \ km/h$ faster than the one from Toronto. At what distance away from Toronto do the trains pass each other?

Let I be speed of the train from Toronto to Montreal -> Train(A)

Let I " distance " " Toronto to Montreal

	Distance (km)	Speed (km/h)	Time (h)
Train (A)	У	\propto	2 hours
Train (B)	500 - 4	$\chi + 50$	2 hours

$$y = 2 \times 100$$
 into C
 $y = 2 \times 100$
 $y = 200$

* Distance = speed x time

other at 200 km point from Toronto.