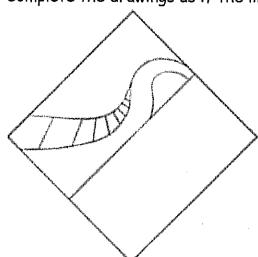
MCR3U

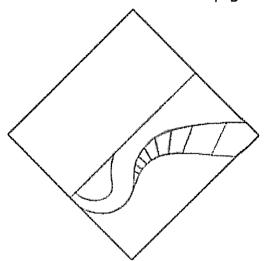
Basics 33 by Patrick JMT

INVERSES

Minds on

Complete the drawings as if the line was a mirror line. Do not turn the page!





Definition: The inverse of a function is the "reverse" of the original function.

Example: The inverse of $y = x^2$ is $y = \pm \sqrt{x}$

$$y = \pm \sqrt{x}$$

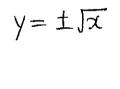
The inverse may or may not be a function. If the inverse is a function, and the original function is f, then f^{-1} is the name of the inverse.

*Be careful! f^{-1} is read "f inverse" and the -1 is NOT an exponent! It does not mean 1/f.

In a table of values, the x and y values are switched for the inverse function.

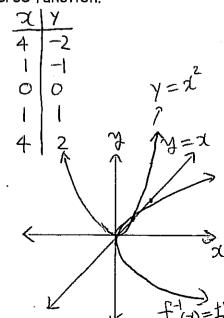
If $(a, b) \in f$, then $(b, a) \in f^{-1}$.

$$y = \chi^{2} \qquad \frac{\chi \mid y}{-2 \mid 4} = \frac{-1 \mid 1}{0 \mid 0}$$



 $\frac{2}{14}$ The graph of an inverse is the reflection of f in the y = x line.

* Algebraically, you switch the I and y and then you re-solve it for y.



Example 1

a) Find the inverse of $f=\{(0,3),(1,3),(2,3),(3,3),(4,3),(5,3)\}$.

$$f^{-1} = \{ (3,0), (3,1), (3,2), (3,3), (3,4), (3,5) \}$$

b) Invariant points are points that do not change during a transformation. What point(s) are invariant?

c) Is the inverse a function? Explain your answer.

d) State the domain and range of f.

$$D = \{0, 1, 2, 3, 4, 5\}$$
 $R = \{3\}$

e) State the domain and range of the inverse.

$$D = \{3\}$$

$$R = \{0, 1, 2, 3, 4, 5\}$$

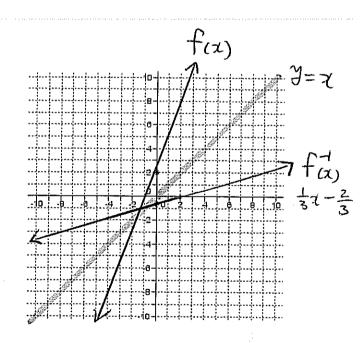
Example 2 Questions that use Conventional Variables

a) Find the inverse of the linear function

$$f(x) = 3x + 2.$$

$$y = \frac{x-2}{3}$$
 or $f'(x) = \frac{1}{3}x - \frac{2}{3}$

b) Is the inverse a function?



c) Graph the function and its inverse.

*Note: When you have a word problem and the variables are specified, you do NOT switch the variables.

Example 3 Application Question

The equation used for converting degrees Celsius to degrees Fahrenheit is

$$F = \frac{9}{5}C + 32$$
. (In function notation this would be $F(C) = \frac{9}{5}C + 32$.)

a) Find the inverse of this function.

$$F = \frac{q}{5}C + 32$$
 rearrange it so
$$C = \frac{5}{9}F - \frac{160}{9}$$

$$F - 32 = \frac{9}{5}C$$
 C by itself. • F = $\frac{5F}{9} - \frac{160}{9}$

$$\times \frac{5}{9} \times \frac{5}{9} \times \frac{5}{9} = C$$

$$C = \frac{5}{9}F - \frac{160}{9}$$

$$F^{-1} = \frac{5F}{9} - \frac{160}{9}$$

It can be used to convert Fahrenheit to Celcins.

Example 4 Restricting the domain to make the inverse a function

a) Find the inverse of $h(x) = x^2 + 5$ algebraically.

$$\mathcal{A} = \chi^2 + 5 \qquad \text{i. h}^{-1}(x) = \pm \sqrt{\chi - 5}$$

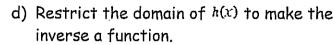
$$\chi = y^2 + 5$$

$$\pm \sqrt{\chi - 5} = \sqrt{y^2}$$

$$x = y^2 + 5$$

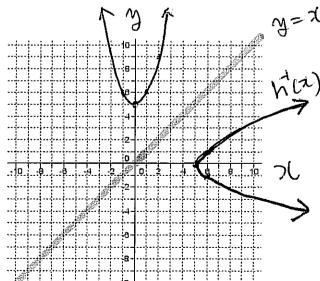
 $\pm \sqrt{\chi-5} = 3$ b) Graph the function and it's inverse.

No it is not a function.



We can restrict the domain (of how)

$$\ominus$$
 to $\{\alpha \in \mathbb{R}, \alpha \geq 0\}$ or $\{\alpha \in \mathbb{R}, \alpha \leq 0\}$



17ab Homework: pg. 138 #1ab, 3, 4bd, 5, 7abc, 11, 12, 15ii, iii, iv, 17ab