The schedule and homework assignments below are subject to change at the teacher's discretion.

	Day	Topic	Homework
	1	Lines & Solving Equations	P26 #1-6 (at least one from
		Review	Jac least one from each question — try as
	Feb 19	-> Lines Review	many as needed to feel confident)
	Wed		Worksheet (Hw)
FIQ	2	Solving Linear Systems by	pg. 60 #(1-4), 5, 7-9
	Th	Graphing	Bracketed questions are optional
			Pg. 70 #1-4, 5EOO, 6, 16
			Thinking Practice: 17, 21-23
F20	3 :	Substitution	Homework: pg. 70 # (1-3), 7, 8, 9ab
THY	Fri -	,	TIPS practice: 21
F 23	4	Elimination	Homework: pg. 101 # 1-3, 6, 7
	Man		Bolded questions are mandatory.
	,		TIPS practice: 10, 11, 22, 21**
24	5	Algebraic Expressions	Worksheet
	Tu	Systems of Equations Review	
25	6 Wed	Word Problems Age Numbers	Worksheet
26	7 ,	Solving Mixture and	Worksheet
	Th	Investment Problems	
27	8	Speed Distance Time Problems	Worksheet
	Fr		
ļ .	9	Speed Distance Time Trickier	Worksheet
M2	Mon.		
M 2	10	Review	Worksheet
ו כוו	Tu		
-			

M4

We J

Test

- 1. Remember to Solve an equation means to Isolate the variable (get it by itself) and determine its value that will make the equation true (e.g. LS=RS)
- 2. When you are moving a term you are really doing the opposite operation to that term and doing it to both sides of the equation
- 3. If equations contain fractions... CLEAR THE FRACTIONS!!
- 4. If there is a number or letter in front of a set of brackets you must first Expand (Distributive Property) to remove the brackets

Solve the following Equations. Show work for each.

a)
$$x + 10 = 15$$

b)
$$x - 20 = -4$$

c)
$$\frac{x}{5} = -3$$

d)
$$-8y = 32$$

e)
$$3 - x = 7$$

f)
$$3x + 4 = -5$$

g)
$$\frac{x+4}{2} = 12$$

g)
$$\frac{x+4}{2} = 12$$
 h) $8(x+3) = 40$

i)
$$-3 - 4y = -6$$

j)
$$8x + 4 = 5x - 11$$

k)
$$5(x-2) = x + 2$$

I)
$$x + 8 = 7$$

m)
$$5x = -35$$

n)
$$3 - x = 7$$

m)
$$5x = -35$$
 n) $3 - x = 7$ o) $\frac{1}{2}x + 1 = 3$ p) $\frac{x+2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{3}$

$$q)\frac{x}{3} = \frac{4}{5}$$

$$r)\frac{3}{x} = \frac{7}{13}$$

$$x^{2}$$
 x^{2} x^{2

t)
$$\frac{x}{3} - 4 = \frac{1}{2}$$

$$u)3(x+3) = 5(x+2) + 1$$

v)
$$5y - 18 = -8$$

w)
$$5m + 16 = 3m$$

$$x) 13t - 15 = 35 - 12t$$

y)
$$3(5m + 4) = 5(6m - 1)$$

 $15m + 12 = 30m - 5$
 $15m - 30m = -5 - 12$
 $-15m = -17$
 $-15 = -15$
 $6m = \frac{17}{15}$
 $7m = \frac{17}{15}$
 $7m = 7m = 7m$

$$z)\frac{1}{5}x-3=\frac{1}{4}x$$

$$CD = 4, 3 = 12$$

* Multiply 12 both Sides

$$\frac{1}{1} = \frac{11}{1}$$

$$\Rightarrow 12\left(\frac{r+5}{4} + \frac{r-2}{3}\right) = 12 \times 7$$

$$\Rightarrow 3(r+5) + 4(r-2) = 84$$

$$3r+15+4r-8=84$$

a)
$$x = 5$$
 b) $x = 16$

$$\sim 7r = 7$$

f)
$$x = -3$$
 g) $x = 20$

h)
$$x = 2$$
 i) $y = 3/4$

c)
$$x = -15$$
 d) $y = -4$ e) $x = -4$

$$-4 \quad 1/x = -3 \quad g/x = 20$$

o)
$$x=4$$
 p) $x=4$

j)
$$x = -5$$
 k) $x = 3$ l) $x = -1$
q) $x = 12/5$ r) $x = 33/7$ s) $x = 8/5$

k)
$$x = 3$$
 l) $x = -1$

m)
$$x = -7$$
 n) $x = -4$
t) $x = 27/2$ u) $x = -1$

v)
$$y = 2$$
 w) $m = -8$

x)
$$t = 2$$

y)
$$m = 17/15z$$
) $x = -60$

$$(7x - 27/2)$$

22) $r = 11$

Slope y-Intercept Form

y = mx + b

Standard Form ax + by + c = 0

Where:

m = Slope

b = y intercept

How can we find Slope? $\frac{y_2 - y_1}{\alpha_2 - \lambda_1} =$

Example 1: Find the slope of the line joining the points K(-3, -3) and L(-4, -6).

$$\mathcal{M} = \frac{\Im^{2} - \Im_{1}}{\Im^{2} - \Im_{1}} = \frac{-6 - (-3)}{-4 - (-3)} = \frac{\Im^{1} \cdot \Im_{1}}{-1} = 3$$

Example 2: Write, in the form y = mx + b, the equation of the line that has a slope of 6 and passes through (1,5). m=6 b=? When x=1, y=5

$$5 = (6 \cdot 1) + b$$

$$5=6+b$$

$$5 - 6 = b$$

Example 3: Express the following in standard form:

a)
$$4x - 2y = 12$$

$$\Rightarrow 4x - 2y - 12 = 0$$

b)
$$y = 3x - 1$$

$$-3x+y+1=0$$

$$m_1 = \frac{-1}{m_2}$$

 $\therefore \mathfrak{I} = 6 \times -1$

Parallel lines have the Same slope. Perpendicular lines have negative reciprocal slopes.

Example 4:

then they are perpendicular

Are the lines with the given slopes parallel perpendicular or neither? to each other

a)
$$m_1 = 6, m_2 = -6$$
 Neither

b)
$$m_1 = 0.25, m_2 = -4$$
 Perpendicular

$$\frac{25}{100} = \frac{1}{4} \longrightarrow -\frac{4}{1} = -4$$

$$6 \rightarrow \frac{1}{6}$$

$$\frac{2}{10} = \frac{1}{5}$$
(c) $m_1 = 0.2, m_2 = \frac{1}{5}$ Parallel

Example 5: Write an equation for the line that is perpendicular to $y = \frac{1}{3}x + 4$ and passes through the point (2,4). When $\chi = 2$, $\gamma = 4$

$$m_2 = -\frac{3}{7} = -3$$

$$b_2 = ?$$

$$3 = -3x + b_2$$
 $4 = -3(2) + b_2$
 $4 = -6 + b_2$
 $10 = b_2$

Lines can be graphed using 3 methods:

Example 6: Graph the following lines:

a)
$$y = \frac{8x+2}{4}$$
 Table of value

$$0 \rightarrow y = \frac{(8 \cdot 0) + 2}{4} = \frac{2}{4} = \frac{1}{2}$$

b)
$$y = \frac{1}{4}x - 2$$
 \longrightarrow Slope and \mathcal{A} int
 $y = mx + b$

$$* \% \text{ int} = -2 \longrightarrow (0, -2)$$

* slope =
$$\frac{1}{4} = \frac{\text{rise}}{\text{rus}}$$

$$\begin{array}{c} \text{c) } 2x + 6y = 24 \rightarrow \text{Graphing with two intercepts} \\ \text{Yint} \rightarrow \chi = 0 \rightarrow \text{equation} \rightarrow (2 \cdot 0) + 6y = 24 \\ \frac{6y}{6} = \frac{24}{6} \longrightarrow y = 4 \rightarrow (0, 4) \end{array}$$

Homework: pg. 26 #1-6 (at least 1 from each question - try as many as needed to feel confident)

$$\chi : Mt \rightarrow \gamma = 0 \rightarrow equation \rightarrow 2\chi + (6.0) = 24$$

 $2\chi = 24 \rightarrow \chi = 12 \rightarrow (12.0)$

