Recall: Find the equation of a line that passes through (1,1) and (5,9).

Definition:

Mid Point _____ - A point that divides a line segment into two equal line segments.

Investigation:

How can you determine the coordinates of a midpoint?

- 1.) Plot and label the line segment defined by each pair of endpoints.
 - a. A(-4,2) and B(6,2)
 - b. C(-3,0) and D(2,0)

each midpoint with its coordinates.

Question: What property do the line segments have in common?

**Both lines contained same of coordinates A this point AB So you just had to add $z_1 \in z_2$ then divide it by 2.

**Mid point of $\overline{AB} = (.1, 2)$ because \overline{AB}

Question: How are the coordinates of the midpoint of each line segment related to the coordinates of its endpoints?

- 3. Plot and label the line segment defined by each pair of endpoints.
 - a. G(-4,2) and H(-4,6)
 - b. J(-1,4) and K(-1,-2)

Question: What property do the line segments have in common?

4. Determine the coordinates of the midpoint of each line segment in step 3. Label each midpoint with its coordinates.

Question: How are the coordinates of the midpoint of each line segment related to the coordinates of its endpoints?

- a. P(1,1) and H(5,4)
- b. J(-5,4) and K(-1,0)

Determine the coordinates of the midpoint of each line segment in step 5. Describe how you calculated these coordinates.

$$\chi$$
 coordinate $PH = \frac{5+1}{2} = \frac{6}{2} = 3$

Y coordinate
$$\overline{PH} = \frac{4+1}{2} = 2.5$$

6. Can you write the formula for the coordinates of the midpoint of a line segment related to the coordinates of the endpoints?

The formula for a midpoint with endpoints (x_1, y_1) and (x_2, y_2) is:

$$M = \left(\frac{\chi_1 + \chi_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Example 1: Find a midpoint.

A city has two hospitals, at coordinates A(3,5) and B(7,9). The city wants to build a new ambulance station halfway between the two hospitals. Determine the coordinates of this location.

$$M = \left(\frac{3+7}{2}, \frac{5+9}{2}\right)$$

$$M = \left(5, 7\right)^{-1}$$

Median – A line segment joining a vertex of a triangle to the midpoint of the opposite side.

Draw the median from A

Draw the median from B

Draw a median from C

Example 2: Median of a Triangle

Determine an equation for the median from vertex C for the triangle with vertices C(5, 2),

A(-3,3), and B(2,-5).

Mid
$$\overline{AB} = \left(-\frac{1}{2}, -1\right)$$

$$m_{\lambda} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(2 - -1)}{(5 - -\frac{1}{2})} = \frac{3}{2} = \frac{3}{2} = \frac{6}{11}$$

$$=\frac{3}{5.5}=0.545$$
 or $\frac{6}{11}$: $y=\frac{6}{11}x+b$ Sub C point into (

$$\mathcal{Z} = \frac{6}{11}x + b$$

Right Bisector - the line that passes through the midpoint of a line segment and intersects it at a 90° angle.

tre
$$y = \frac{6}{11}x + b \longrightarrow 2 = \frac{6}{11}(5) + b$$

$$2 = \frac{30}{11} + b \rightarrow 2 - \frac{30}{11} = b \rightarrow b = \frac{22 - 30}{11} = -\frac{8}{11}$$

e. The equation of a median (=
$$\overline{cD}$$
) is $\underline{y} = \frac{6}{11} \times -\frac{8}{11}$

Midpoint and Median Worksheet

March 9 HW

- 1. Determine the midpoint of each line segment from the given endpoints.
 - a) (4,4) and (10,-6)
 - b) (-5,3) and (1,-1)
 - c) (2,7) and (2,-2)
 - d) (4.2, 1.9) and (3.4, -4.4)
 - e) $\left(\frac{1}{2}, \frac{5}{2}\right)$ and $\left(\frac{3}{2}, -\frac{9}{2}\right)$
- 2. For a line segment PQ, one endpoint is Q(8,3) and the midpoint is M(3,6). Determine the coordinates of the other endpoint, P.
- 3. Determine the equation of the perpendicular bisector for the line segment with endpoints A(-2,9) and B(8,3)
- 4. The centre of a circle has coordinates (0,0). The endpoint of a diameter of the circle has coordinates (3,-4). What are the coordinates of the other endpoint of the diameter?
- 5. Triangle ΔDEF has vertices D(-2,0), E(4,-3) and F(8,8)
 - a) Draw ΔDEF .
 - b) Draw and determine the equation of the median from D to the midpoint of EF.
- 6. The vertices of $\triangle ABC$ are A(4,4), B(-6,2), and C(2,0). Find an equation in slope y-intercept form for the median from vertex A.
- 7. For the triangle with vertices P(-2,0), Q(4,6) and R(5,-3), find an equation for the median from
 - a) Vertex P
 - b) Vertex Q

Thinking

- 8. Write an expression for the coordinates of the midpoint of the line segment with endpoints P(a,b) and Q(3a,2b). Explain your reasoning.
- 9. Decide whether each statement is always true, sometimes true, or never true. Justify your answers (diagrams may be useful).
 - a) Two line segments with the same midpoint have the same length.
 - b) Two parallel line segments have the same midpoint.
 - c) The midpoint of a line segment is the only point that divides it into two equal parts.
 - d) A point equidistant from the endpoints of a line segment is the midpoint of the line segment.

- 10. In three dimensions, the location of a point can be represented by the ordered triple (x, y, z).
 - a) Find the coordinates of the midpoint of the line segment with endpoints A(2,3,1) and B(6,7,5).
 - b) Write an expression for the coordinates of the midpoint of the line segment with endpoints (x_1, y_1, z_1) and (x_2, y_2, z_2) .
- 11. A line segment has endpoints A(2,1) and B(11,19).
 - a) Find the coordinates of the two points that divide the line segment into three parts. Check your answer with a graph.
 - b) Describe the method that you used in part a).
- 12. The endpoints of line segment PQ are P(3, -4) and Q(11, c). The midpoint of PQ is M(d, 3). Find the values of c and d.

Challenge:

13. Determine the equation for the right bisector of the line segment with endpoints P(-5,-2) and Q(3,6).

Answers:

1. a)
$$(7,-1)$$
 b) $(-2,1)$ c) $\left(2,\frac{5}{2}\right)$ d) $(3.8,-1.25)$ e) $(1,-1)$

2.
$$P(-2,9)$$

3.
$$y = \frac{5}{3}x + 1$$

$$4. (-3,4)$$

5.
$$y = \frac{5}{16}x + \frac{5}{8}$$

6.
$$y = \frac{1}{2}x + 2$$

7. a)
$$y = \frac{3}{13}x + \frac{6}{13}$$
 b) $y = 3x - 6$

8. (2a, 1.5b), these coordinates are the mean of the x-coordinates of the endpoints and the mean of the y-coordinates of the endpoints.

9.

- a) Sometimes true: Line segments can bisect each other without being equal in length.
- b) Never true: Parallel lines have no points in common.
- c) Always true: The midpoint is the only point that is both on the line segment and equidistant from the endpoints.
- d) Sometimes true: The midpoint of a line segment is equidistant from the endpoints but so is every other point on the right bisector of the line segment (next lesson)

10. a)
$$(4,5,3)$$
 b) $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$

12.
$$c = 10$$
, $d = 7$

13.
$$y = -x + 1$$