MCR3U

April 22 **Appreciation and Depreciation**

Ms. Kueh

* Unit test will be Monday, April 27

Recall: Calculate the total cost, with tax, of a book that is priced at \$29.99.

$$$29.99(0.13) + $29.99 = 3.90 + $29.99 = 33.89$$

Was your calculation one step? If not, figure out how to calculate the total cost in one step.

Example 1 Compound Interest

0.06

In 2000, \$1000 was invested at a rate of 6% per year for 4 years.

\$ 1000 = A

a) How much money was there after 4 years?

1.06 = B

Number of years	Money	e e con pulsa
0	\$ 1000	98 + 1 - ₹
1	\$ 1000 (1.06) =	\$ 1060
2	\$ 1060 (1.06) =	₱1123.60.
3	\$ 1123.60 (1.06)=	\$1191.02
4	\$ 1191.02 (1.06) =	\$1262.48

b) Write an equation to model this growth.

$$Y = 1000 (1.06)^{2}$$

Let & be # of years Let & be amount of

money.

How much money is there after 25 years? When $\alpha = \frac{25}{100}$ pears, M = ?

Example 2 Population Growth

The world population has just reached 7 billion people and the average growth rate is about 1.1%/a.

1.1%/a. $1.1\% = \frac{1.1}{100} = 0.011 \Rightarrow b = 1 + 0.011 = 1.011$

a) Assuming the growth rate stays the same, what will the population be in 5 years?

Number of years	Number of people	to remune a set of 6 .
0	7,000,000,000	e devices a second
1	7,000,000,000 (1	(011) = 7,077,000,000
2		11) = 7,154,847,000
3	7233550317	1.
4	7313119370	
5	7393563684	

b) Write an equation to model this growth.

$$Y = 7000,000,000 (1.011)^{2}$$

Let Y be population

Let X be # of years.

Example 3 Depreciation

A new car costs \$24 000. It loses 18% of its value each year after it is purchased.

a) Determine the equation that models the value of the car.

Age of Car	Value of Car	* After first year, you have
0	\$ 24000	calculate:
1	\$24000 × 0.82 = \$19680	\$24000 - 0.18 (\$2400)
2	\$19680 × 0.82 = \$16137.	60 = \$19680

Let
$$\mathcal{Y}$$
 be the car's value
Let \mathcal{X} be the # of years
 $Y = 24000 (0.82)^{x}$

$$\frac{30 \text{ months}}{12 \text{ months}} = 2.5 \text{ years}$$
 $\frac{12 \text{ months}}{12 \text{ months}} = 2.5 \text{ years}$ $\frac{14.613.22}{12.5}$

c) Determine the number of years it will take for the car to depreciate to one-half of its original value.

$$24000 \div 2 = 12000 \rightarrow \text{When } y = 12000, \ \chi = ?$$

$$\frac{12000}{24000} = \frac{24000 (0.82)^{2}}{24000}$$

$$\frac{1}{2} = 0.82^{2}$$

You have to guess and check until you find the answer 0.5 = 0.82

$$\alpha = 3.49$$

i. It takes 3,49 years to depreciate to one-half of its original value.

Grade 12 Method:
$$log 0.5 = log 0.82^{X} \rightarrow log 0.5 = X \cdot log 0.82$$

$$2 = \frac{log 0.5}{log 0.82} = 3.49 \qquad log 0.82 \qquad log 0.82$$

Example 4 Determine equations for the following:

a) A town with a population of 12 000 has been growing at an average rate of 2.5% for the last 10 years. Suppose this growth rate will be maintained in the future.

$$y = 12000 (1.025)^{2}$$

b) Find an equation for the situation above but for population in the thousands.

$$y = 12 \cdot (1.025)^{\alpha}$$