

Consolidation:

1. Make a chart listing the equations that have graphs that are increasing, decreasing and neither increasing nor decreasing.

Increasing	Decreasing	Neither
$y = 2^{x}$	$\dot{y} = \left(\frac{1}{2}\right)^{\chi}$	y= 1 ^x
$y = 3^{x}$	$y = (\frac{1}{3})^{x}$	
$y = 4^{x}$	$y = -2(2^{x})$	
$y' = 2(2^{2})$		
	Increasing $y = 2^{x}$ $y = 3^{x}$ $y = 4^{x}$ $y = 2(2^{x})$	$y = 2^{x} \qquad y = \left(\frac{1}{2}\right)^{x}$ $y = 3^{x} \qquad y = \left(\frac{1}{3}\right)^{x}$

What characteristic does an exponential equation have if its graph $y = ab^{\alpha}$

- a) Increases?
- 1 a>0 and b>1

- @ a < 0 and 0 < b < 1

- b) Decreases?
- (1) a > 0 and 0 < b < 1
- @ a<0 and b>1

- DIF b>1, The higher the "b" value, the steeper the graph becomes.
- If 0 < b < 1, then the higher the "b" value, the flatter the graph becomes, horizontally stretched = b^{\times} \rightarrow (0,1)

 - 4. If the equation was changed to $y = ab^x$ what would the y-intercept be?

5. The graph $y = \left(\frac{1}{2}\right)^x$ and the graph of $y = 2^{-x}$ are the same. Show algebraically that this is true.

$$2^{-\chi} = \frac{1}{2^{\chi}}$$

$$\left(\frac{1}{2}\right)^{\chi} =$$

$$2^{-x} = \frac{1}{2^x} \qquad \left(\frac{1}{2}\right)^x = \frac{1^x}{2^x} = \frac{1}{2^x}$$

Homework: Pg. 185 #C1, C2,(3)(7) 9, 11