MPM2D

Factored Form of a Quadratic Relation

Ms. Kueh

Recall

If the vertex is (h, k), then the equation of the axis of symmetry is $\chi = h$

There are several different ways to write the equation of a line. What are two ways of writing the equation of a line that you learned in grade 9?

$$y = mx + b$$
 or $ax + by + c = 0$

Definitions:

Term part of an algebraic expression, separated from the rest by plus or minus signs.

For example in $2x^2 + x - 10$, the terms are $2x^2 + x - 10$

Polynomial an algebraic expression consisting of one or more terms, can be written in the form $a + bx + cx^2 + \cdots$, where a, b, and c,... are numbers.

of polynomial Some examples are: x^3 , x^2+1 , 7, x^3+x^2+x+5

of a one-variable polynomial is the highest exponent that appears in any term of the expanded form of the polynomial.

Example 1 Determine the degree of each polynomial

a)
$$2x - 2$$

b)
$$3r^{2}$$

c)
$$2x^3 - 3x^2 + x - 4$$

d)
$$x^2 + 3x - 1$$
 e) $x(x + 2)$ f) $x^2(x^3 - 3)$ g) $x(x^2 + 2x + 1)$

e)
$$x(x + 2)$$

f)
$$x^2(x^3 - 3)$$

g)
$$x(x^2 + 2x + 1)$$

$$=\chi^2+2\chi$$

$$= \chi^{2+3} - 3\chi$$

$$= \chi^2 + 2\chi$$
 $= \chi^{2+3} - 3\chi^2 = \chi^3 + 2\chi^2 + \chi$

$$2 = x^5 - 3x^2$$

*A quadratic relation has degree of 2.

There are 3 different ways to write a quadratic relation.

- 1) The Standard Form of a quadratic relation is $Y = ax^2 + bx + c$
- 2) The Factored Form of a quadratic relations is $Y = \alpha(x r)(x s)$ FINALLY! A reason to factor!! ©

Direction of opening

If a > 0, the parabola opens $\frac{VP}{}$ and has a $\frac{VP}{}$

If a < 0, the parabola opens down and has a maximum

7040

Number of zeros
$$Y = \alpha(\alpha - r)(\alpha - s)$$

(1) If $r \neq s$, then the relation has two zeros (= two χ intercepts)

2) If
$$r = s$$
, then the relation has One Zero (= one x intercept)

also known as

Example 1 Find the zeros a.k.a. χ -intercepts of the parabola described by

$$y = (x+3)(x-5)$$

of
$$0 = (x+3)(x-5)$$
 similar to $0 = A \cdot B \rightarrow If A=0 \rightarrow C$

$$\alpha + 3 = 0$$
 or $\alpha - 5 = 0$

$$2(=-3)$$

$$(-3,0)$$

Example 2 Describe the graph of the quadratic relation y = 2(x + 1)(x - 7).

a) x-intercepts (YES, you must show all work)
$$\rightarrow \emptyset = \emptyset$$

$$0 = 2(x+1)(x-7)$$

$$\alpha + 1 = 0$$

$$\chi - 7 = 0$$

$$\alpha = -1$$
 : (-1,0) $\alpha = 7$: (7,0)

b) vertex
$$\rightarrow$$
 (h, k)

$$h = \frac{x_1 + x_2}{2} = \frac{-1 + 7}{2} = 3$$

$$7 = 2(3+1)(3-7)$$

$$\mathcal{Y} = 2(4) \cdot (-4) = -32$$

c) axis of symmetry

$$x=3$$

".
$$Vertex = (3, -32)$$

d) sketch the graph

Example 3 Try it yourself: For the graph
$$y = 5(x + 3)(x - 5)$$
.

(3, -32)

(5,0)

Find the

$$0 = 5(x+3)(x-5)$$

$$\gamma = F$$

:. Two Intercepts are (-3,0) and

$$\alpha = -3$$
 $\alpha = 5$
 $(-3,0)$ b) vertex $(5,0)$

$$h = \frac{\chi_1 + \chi_2}{2} = \frac{-3+5}{2} = \frac{2}{2} = 1$$

Sub 2=1 -> equation

$$y = 5(1+3)(1-5)$$

$$y = 5 \cdot (4)(-4)$$

$$y = -80$$
 ... Vertex = $(1, -80)$... o axis of symmetry

$$\chi = 1$$

d) sketch the graph

Homework: Worksheet