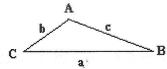
Park

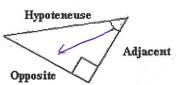
Trigonometry Summary Sheet


MCR3U

Labelling Triangles

Triangles in General:

* Test on


Monday (May 11)

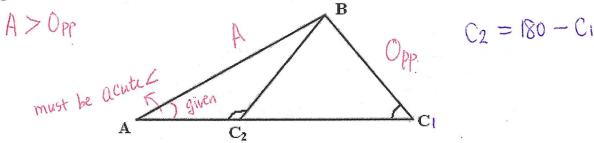
Capital letters for angles, and small letters for the opposite sides

Right Angle Triangles:

The adjacent side and opposite side depend on which angle you are using.

Right Angle Triangles	Non-Right Angle Triangles	
Pythagorean Theorem	Cosine Law $*a,b,c =$	Sic
$a^2 = b^2 + c^2$	$a^2 = b^2 + c^2 - 2bc \cos A * A = angle$	
where a is the hypotenuse	Used in:	
	SSS 10 2	
	SAS 10 50 2	
	5715	
$S \stackrel{O}{=} C \stackrel{A}{=} T \stackrel{O}{=}$	Sine Law	
н н а	Solving for a side:	
Always label your triangle first with H, O, A	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	
	Solving for an angle: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$	
	Used in: SSA 10 22 2	
	AAS (whenever you have 2 angles)	

10


If you don't know the angle,

WARNING: Make sure calculator is in degrees.

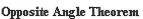
$$\sin x = 0.722$$

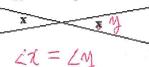
 $x = \sin^{-1}(0.722)$
 $x = 46^{\circ}$

Sine Law Ambiguous Case:

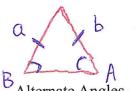
-occurs when the side opposite to the angle given is smaller than the side adjacent to the angle.

There are two possible Angle C values, for two different triangles. One of the triangles is an obtuse triangle, one is an acute.

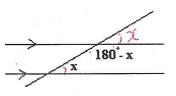

This is an angle of elevation:

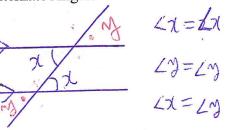


Geometry Theorems: (fill in all the missing ones)

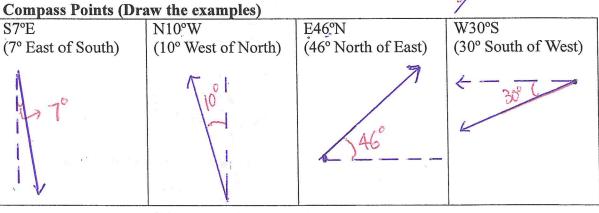


Supplementary Angle Theorem


Isosceles Triangle



Parallel Lines Corresponding Angles Co-interior Angles


Parallel Lines

Alternate Angles

you face to the East.

