MPM2D Ms. Kueh

Quadratic Word Problems...All Mixed Together!

Remember, you have to read max or min (or some other derivative) in order to 'complete the square'. Otherwise you solve a quadratic equation by factoring or using the quadratic formula.

- 1. The cost, in dollars, of operating a machine per day is given by the formula $C(t) = 2t^2 84t + 1025$, where t is the time in hours, the machine operates. What is the minimum cost of running the machine? For how many hours must the machine run to reach this minimum cost?
- 2. A basketball is tossed from the top of a 3m wall. The height of the basketball is defined by the relation $y = -t^2 + 2t + 3$, where t represent the time in seconds, in metres, and y represents the height, in metres, above the ground.
 - a) How many seconds have passed when it lands on the ground?
 - b) What is the highest height the ball reaches?
 - c) For how many metres horizontally is the ball higher than 3.5 m?
- 3. At the Mini Market at 4L bag of milk costs \$3.90 and the store sells an average of 120 bags. For each \$0.10 decrease in price, sales increase by 20 bags per day.
 - a) Determine the price they should sell the milk at to make a revenue of \$700.
 - b) Determine the price they should sell the milk at to make a maximum revenue?
- 4. The sum of two numbers is 30 and their product is 209. Determine the two numbers.
- 5. The sum of two numbers is 30. Determine the two numbers if their product is a maximum.
- 6. The population of a town is modelled by $P(x) = -0.1x^2 + 1.2x + 4.4$, where x is the number of years since the year 2000, and P is the population in thousands.
 - a) In the year 2005, what is the population?
 - b) In the year 1999, what is the population?
 - c) When was the population of the town the greatest? What was the greatest population?
 - d) The town has really become a terrible place to live. Predict when all the residents will leave the town.
- 7. The product of two consecutive even integers is 224. Find the integers.

1.
$$C(t) = 2t^2 - 84t + 1025$$
 $t = time in hours$

Minimum $cost = ?$
 $t = 7$

C(t) =
$$2(t^2 - 42t) + 1025$$

= $2(t^2 - 42t) + (\frac{42}{2})^2 - (\frac{-42}{2})^2 + 1025$
= $2((t - 21)^2 - \frac{1764}{4}] + 1025$
= $2(t - 21)^2 + 1025 + (2 - \frac{1764}{4})$
= $2(t - 21)^2 + 1025 - 882$
= $2(t - 21)^2 + 143 \rightarrow \text{Vertex} = (21, 143)$

.. The minimum cost is \$143 when t=21 hours

2.
$$y = -t^2 + 2t + 3$$
 $t = time in seconds$

a)
$$t=?$$
 when $y=0$

$$0 = -t^2 + 2t + 3$$

$$\frac{-2+4}{-2} = \frac{2}{-2} = -1$$

$$QF = -b \pm \sqrt{b^2 - 4ac}$$
2a

$$\begin{bmatrix} -2 & -2 \\ -2-4 & = -6 \\ -2 & = 3 \end{bmatrix}$$

$$= -2 \pm \sqrt{2^2 - 4(-1)(3)}$$

$$2 \cdot (-1)$$

3m

$$= -2 \pm \sqrt{4 + 12}$$

$$=\frac{-2\pm\sqrt{16}}{-2}=\frac{-2\pm4}{-2}$$

2. (continued)
$$y=-t^2+2t+3$$
 Amy

$$y = -(t^{2}-2t) + 3$$

$$= -(t^{2}-2t + (\frac{-2}{2})^{2} - (\frac{-2}{2})^{2}) + 3$$

$$= -(t-1)^{2} + 3 + (-1x-1)$$

$$=-(t-1)^2+3+1$$

$$=-(t-1)^2+4$$

$$=-(t-1)^2+4$$
 : Vertex = (1,4)

.. The highest height is 4m.

2c)
$$3.5 = -t^2 + 2t + 3$$
 (Sub $y = 3.5$)

$$0 = -t^2 + 2t + 3 = 3.5$$

$$0 = -t^2 + 2t - 0.5$$
 (Standard form)

$$QF = -b \pm \sqrt{b^2 - 4ac} =$$

$$= -2 \pm \sqrt{2^2 - 4 \cdot -0.5}$$

$$=\frac{-2\pm\sqrt{4-2}}{-2}$$

$$=\frac{-2\pm\sqrt{2}}{-2}$$

$$=\frac{-2\pm1.414}{-7}$$

$$= -2 \pm \sqrt{2^{2} - 4 \cdot 4 \cdot -0.5}$$

$$= -2 \pm \sqrt{2^{2} - 4 \cdot 4 \cdot -0.5}$$

$$= -2 + 1.414$$

$$= 0.293 \text{ or}$$

$$= -2 - 1.414$$

$$= -2 - 1.414$$

.. The ball was higher than 3.5m for 1.41 seconds

#3	Revenue = Unit Price X Quantity sold	Price	Quantil
	$Rev = 3.90×120	3.9	120
	Rev = (3.9 - 12)(120 + 202)	3,8 3,7	140 160
	700 = (3.9 - x)(120 + 20x)	<i>5</i> , 1	
	700 = 468 + 78		