Vertex Form of a Quadratic Relation

vertex

- 11 1
- 2) The standard form of a quadratic relation is:
- $f(\alpha) = \alpha x^2 + bx + c$
- 3) The factored form of a quadratic relation is:

$$f(x) = a(x-r)(x-s)$$

Another way to express a quadratic relation is the Vertex form :

$$f(x) = a(x-h)^2 + k$$

- $\rightarrow a$ is the same in factored form and standard form
- $\rightarrow h$ and k are the coordinates of the vertex. (h, k)

Example 1 For the equation
$$f(x) = -2(x-4)^2 + 3$$

- a) What is the vertex of the graph of the quadratic relation?
- (4,3)

- b) What is the axis of symmetry?
- c) What is the direction of opening?
- $-2 \rightarrow \cap \rightarrow opens down$

d) Sketch the graph:

2

- e) How many zeros are there?
- f) Find the standard form of the quadratic relation.

$$f(\pi) = -2(\pi - 4)^{2} + 3$$

$$= -2(\pi - 4)(\pi - 4) + 3$$

$$= -2(\pi^{2} - 4\pi - 4\pi + 16) + 3$$

$$= -2(\pi^{2} - 8\pi + 16) + 3$$

$$= -2\pi^{2} + 16\pi - 32 + 3$$

$$= -2\pi^{2} + 16\pi - 29$$

Standard form is $f(x) = -2x^2 + 16x - 29$

Example 2 Find the equation of the parabola in vertex form if

a)
$$a = 5$$
, and the vertex is at $(-2, 6)$

b)
$$a = 3$$
, vertex at $(-4, -5)$

$$f(x) = \alpha (x-h)^2 + k$$

 $f(x) = 5(x+2)^2 + 6$

$$f(x) = 3(\chi + 4)^2 - 5$$

Example 3

|+|=a

2 = a

Find the equation in vertex form if a parabola has vertex at (5, -1), and it passes through (4,1).

$$f(x) = \alpha (x-5)^{2} - 1$$

$$5ub x = 4, y=1 J$$

$$1 = \alpha (4-5)^{2} - 1$$

$$1 = \alpha (-1)^{2} - 1$$

$$1 = \alpha - 1$$

$$f(x) = 2(x-5)^2 - 1$$

Example 4 Find the vertex form equation for this graph:

Vertex =
$$(2, -3)$$
 $A(3, -1)$
 $f(\pi) = \alpha(\pi - 2)^2 - 3$
sub $\alpha = 3$, $\beta = -1$
 $-1 = \alpha(3 - 2)^2 - 3$
 $-1 = \alpha(1)^2 - 3$

$$-1 = \alpha - 3$$

$$-1 + 3 = \alpha$$

$$2 = \alpha$$

$$f(x) = 2(x-2)^2-3$$

Example 5 Find the vertex form equation of f(x) = 3(x-1)(x+2).

Since of intercepts are
$$| \text{ and } -2 \rightarrow \frac{1+(2)}{2} = \frac{-1}{2}$$

* Vertex's of coordinate = $-\frac{1}{2}$ sub this into equation
$$f(x) = 3(-\frac{1}{2} - 1)(-\frac{1}{2} + 2)$$

$$= 3(-\frac{1}{2} - \frac{2}{2})(-\frac{1}{2} + \frac{4}{2})$$

$$= 3(-\frac{3}{2})(\frac{3}{2})$$

$$= \frac{-27}{4}$$

:. Vertex form is
$$f(x) = 3(x+\frac{1}{2})^2 - \frac{27}{4}$$

Example 6 A ball is hit into the air. Its height
$$H$$
 (in metres) after t seconds is $H(t) = -5(t-4)^2 + 120$. (= Vertex form 120 is not 3 intercept)

a) Which direction does the parabola open? Does this make sense?

b) What are the coordinates of the vertex? What does the vertex represent in this situation?

Initial height?
$$\%$$
 intercept =? \rightarrow sub $\%$ = 0 or $\%$ = 0
 $\%$ H(t) = $-5(0-4)^2 + 120$
 $\%$ H(t) = $-80 + 120$
 $\%$ H(t) = $40m$

May 19

d) Is the ball going up or down at t = 3? Explain.

Since intial height is 40m and vertex is (4, 120)

So we can reasonably assume that the ball is going up at t = 3 seonds.

e) Is the ball still in the air after 9 s? Explain.

$$H(x) = -5(9-4)^2 + 120$$

$$H_{(1)} = -5.25 + 120$$

$$11 - -125 + 120 = -5$$

H = -125 + 120 = -5Example 7 Find the vertex form equation for a parabola with zeros at -4 and 2 and a y-intercept of -24. (0, -24)

$$y = \alpha(\alpha - r)(\alpha - s)$$

$$y = a(x+4)(x-2)$$

$$-24 = a(0+4)(0-2)$$

$$-24 = 0 \cdot (4) \cdot (-2)$$

$$\frac{-24}{8} = \frac{-8a}{-8}$$

$$3 = \alpha$$

. The ball is not in the air after

9 seconds.

$$y = \alpha (x-h)^2 + k$$

C) is to m

Sub 21=-1 into eq

$$y = 3(-1+4)(-1-2)$$

$$y = 3(3)(-3) = -27$$

2 intercepts

:
$$y = 3(x+1)^2 - 27$$

Something to think about: In the equation $y = a(x - h)^2 + k$, How does a, h, and k change the graph of $y = x^2$? Why?

Homework: Textbook pg. 351 #2a-c, 3cd, 4, 5ed, 6b-d, 7ac, 8ac, 9bde, 10ad, 13, 20, 21a-d, 24 Fridayls HW Monday's HW