MCR3U

Intro to Sequences

Investigate the following situations.

500

in the chart below for a	ii equilaterai	triangle.			
Side Length	lcm	2cm	3cm	4cm	5cm
Perimeter	3 cm	6cm	9 cm	12cm	15 cm

a) Predict the perimeter of the triangle if the side length is .20 cm

$$20 \times 3 = 60$$

b) Identify the type of relationship between the perimeter and the side length. Hint: Examine the first differences.

15-12=3 12-9=3 9-6=3 etc. FD are constant, Su linear relations

c) Create a formula that can be used to find the perimeter of an equilateral triangle with side length. P, 7 = Perineter

$$y = 32$$
 or $P = 3n$ $x, n =$ Side length

$$\alpha$$
, $n =$ side length

d) Verify that your formula works.

2. The cells in a culture divide every hour.

a) If there are cells now, how many cells will there be in hour?

b) Create a table showing the number of cells at the end of each hour for hours.

Time (hours)	1	2	3	4	5.	X
Cells	1000	2000	4000	8000	16000	y

c) What type of relationship exists between the number of cells and the time?

$$\frac{2000}{1000} = 2$$
 $\frac{4000}{2000} = 2$ is Relationship is exponential

d) Predict the number of cells after 8 hours

$$500 \times 2^8 = 128000$$

e) Create an equation that relates the number of cells to the time.

$$B = 500 \times 2^{n}$$

$$B = 500 \times 2^{\circ}$$
 $B = total # of bacteria$

f) Verify that your formula works. $\eta = time in$

Check when = 5 hones

$$B = 500 \times 2^5 = 16000 \text{ bacteria}$$

a) What is the least number of moves required to move five disks?

(Hint: Start with 1 disk, then 2, etc.)

- b) Predict how many moves would be required if there were blocks on the first peg.
- c) What is the general relationship between the number of blocks and the number of moves required?

	In each of these examples a pattern can be found. Try to find the pattern and determine the next two terms for each of the following.
	a) 1, 3, 5, 7, $\frac{9}{1}$ (+2)
	b) 12, 24, 48, 96, 192 (×2)
	b) 12, 24, 48, $\frac{96}{192}$ (×2) $\frac{1}{4}$ increase by 2 (1) $\frac{3}{4}$, $\frac{7}{6}$, $\frac{7}{16}$, $\frac{9}{25}$, $\frac{11}{36}$ (numerator: denominator: FD increase by 2)
	These are examples of sequences of numbers. A sequence is a set of numbers, shapes, letters, etc. that are in a distinct or recognizable pattern. Each number in a sequence is called a term. * For Sequence, domain is closers natural number> Just pain
	3, 6, 9, 12, 15, 18 12 t ₄ = 12 t ₂ t ₃ (not a current of line this sequence with fourth term is. We write this as. State the values of and. The terms of line this sequence represent the perimeters found in question 1 above. We found that, where n represents the side length. For the sequence. Find and.
*	$t_2 = 6$, $t_6 = 18$
	$t_{30}=?=3(30)=90$
	$t_{50}=?=3(50)=150$
	7. Given the general term, state the first terms of each sequence:
	a) $t_n = 3n + 1$ b) $t_n = 2^n$ $t_3 = 2^3 = 8$ (Sequence 3
	a) $t_n = 3n + 1$ b) $t_n = 2^n$ $t_3 = 2^3 = 8$ Sequence is $t_1 = 3(1) + 1 = 4$ $t_1 = 2^1 = 2$ $t_4 = 2^4 = 16$ 2.4,8,16
	$t_2 = 3(2) + 1 = 7$ $t_2 = 2^2 = 4$
	$t_3 = 3(3) + 1 = 10$. Sequence 73 4, 7, 10 etc
	 You have 7 steps to climb. You can go up 1 step or 2 steps at a time. In how many different ways can you climb the steps. Use the chart below to help organize your work.
	Number of steps 1 2 3 4 5 6 7
,	Number of possible ways 2 3 5 8 13 21
	2. Using nickels and dimes only, in how many different ways can you make up various \$0.30 sums of money? (i.e. \$0.05, \$0.10, \$0.15, \$0.20, \$0.25,) et (i.e.,); etc. \$\mathref{3}\$ \tag{5}\$ \(\text{D} = \text{?} \) How many possibilities?
In Segmen	Answer is 6 possibilities. Homework: Pg. 360 C1, C2, (1-6) first and last, 8, 11-13 Thinking #18
1	conetimes, you may use formula, but other times, you can't find a
	formula. You just have to find a pattern.

* Seguence is called a discrete function because it is set of points.